Evaluation of Long-Term Performance and Sustained Treatment at Enhanced Anaerobic Bioremediation Sites

Authors: T. McGuire, D. Adamson, C. Newell
Published: August 2016 in Ground Water Monitoring and Remediation.

Abstract

This study evaluated the long-term performance of enhanced anaerobic bioremediation (EAB) at chlorinated solvent sites to determine if sustained treatment processes were helping to prevent concentration rebound. A database of groundwater concentration versus time records was compiled for 34 sites, with at least 3 years of posttreatment monitoring data (median = 4.7 years, range = 3.0 to 11.7 years). Long-term performance was evaluated based on order-of-magnitude (OoM) changes in parent compound concentrations during various monitoring periods. Results indicate that, relative to the pretreatment concentration, a median concentration reduction for all 34 sites of 1.0 OoM (90% reduction) was achieved by the end of the posttreatment monitoring period. No rebound was observed at 65% of the sites between the first year of posttreatment monitoring and the final year. During this posttreatment period, Mann-Kendall trend analysis indicated that the concentration was stable or decreasing at 89% of the sites where a trend could be established (n = 27; 33% decreasing, 56% stable, 11% increasing). Statistical analysis indicates there is no evidence that the distribution of median concentration reductions after the first year of posttreatment monitoring was different than the distribution of median reductions 2 to 11 years later at the end of the monitoring period (p = 0.67). Similarly, statistical analysis indicates that there is no evidence that the distribution of median reductions for a larger set of sites (n = 84) with less than 3 years of posttreatment monitoring data (1.1 OoM; 92% reduction) was different than the distribution of median OoM reductions for the 34-site dataset with longer monitoring periods (p = 0.80). This suggests that, at a typical site, a 3-year monitoring period should be sufficient for evaluating performance. The results of this study indicate that, in the long term, after the end of active treatment, sustained treatment processes contribute to relatively modest concentration reductions but do mitigate rebound at the majority of EAB sites.